3.1483 \(\int \frac{A+B x}{(d+e x)^{3/2} \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=344 \[ -\frac{2 \sqrt{-a} B \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} e \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{2 \sqrt{a+c x^2} (B d-A e)}{\sqrt{d+e x} \left (a e^2+c d^2\right )}+\frac{2 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} (B d-A e) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{e \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}} \]

[Out]

(2*(B*d - A*e)*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) + (2*Sqrt[-a]*Sqrt[c]*(B*d - A*e)*Sqrt[d + e*x
]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d -
 a*e)])/(e*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) - (2*Sqrt[-a]*B
*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/
Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[c]*e*Sqrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.261359, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {835, 844, 719, 424, 419} \[ \frac{2 \sqrt{a+c x^2} (B d-A e)}{\sqrt{d+e x} \left (a e^2+c d^2\right )}+\frac{2 \sqrt{-a} \sqrt{c} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} (B d-A e) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{e \sqrt{a+c x^2} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}-\frac{2 \sqrt{-a} B \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} e \sqrt{a+c x^2} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/((d + e*x)^(3/2)*Sqrt[a + c*x^2]),x]

[Out]

(2*(B*d - A*e)*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*Sqrt[d + e*x]) + (2*Sqrt[-a]*Sqrt[c]*(B*d - A*e)*Sqrt[d + e*x
]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d -
 a*e)])/(e*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) - (2*Sqrt[-a]*B
*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/
Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[c]*e*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 835

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{A+B x}{(d+e x)^{3/2} \sqrt{a+c x^2}} \, dx &=\frac{2 (B d-A e) \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{2 \int \frac{\frac{1}{2} (-A c d-a B e)+\frac{1}{2} c (B d-A e) x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=\frac{2 (B d-A e) \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{B \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{e}-\frac{(c (B d-A e)) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{e \left (c d^2+a e^2\right )}\\ &=\frac{2 (B d-A e) \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}-\frac{\left (2 a \sqrt{c} (B d-A e) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} e \left (c d^2+a e^2\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (2 a B \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{\sqrt{-a} \sqrt{c} e \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=\frac{2 (B d-A e) \sqrt{a+c x^2}}{\left (c d^2+a e^2\right ) \sqrt{d+e x}}+\frac{2 \sqrt{-a} \sqrt{c} (B d-A e) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{e \left (c d^2+a e^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}-\frac{2 \sqrt{-a} B \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{\sqrt{c} e \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 1.64737, size = 320, normalized size = 0.93 \[ \frac{2 (d+e x) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \left (e \left (\sqrt{a} B+i A \sqrt{c}\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+i \sqrt{c} (B d-A e) E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{e^2 \sqrt{a+c x^2} \left (\sqrt{c} d-i \sqrt{a} e\right ) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/((d + e*x)^(3/2)*Sqrt[a + c*x^2]),x]

[Out]

(2*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)*(I
*Sqrt[c]*(B*d - A*e)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[
a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] + (Sqrt[a]*B + I*A*Sqrt[c])*e*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqr
t[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(e^2*(Sqrt[c]*d - I*Sqrt[a]*e)*Sq
rt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.043, size = 1298, normalized size = 3.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(A*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c
*e^3*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(
1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+A*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(
1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d
))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^2*e-A*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e
-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*e^3*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/
2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-A*Elli
pticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^2*e*(-
(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e
/((-a*c)^(1/2)*e-c*d))^(1/2)-B*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c
)^(1/2)*e+c*d))^(1/2))*a*e^3*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*
c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-B*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)
*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c*d^2*e*(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1
/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d
))^(1/2)+B*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2
))*a*c*d*e^2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+
(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)+B*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2
)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^3*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/(
(-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)-A*x^2*c^2*e^3+B*x^2*c^2*d*e^2-a*A
*e^3*c+a*B*d*e^2*c)*(c*x^2+a)^(1/2)*(e*x+d)^(1/2)/e^2/c/(a*e^2+c*d^2)/(c*e*x^3+c*d*x^2+a*e*x+a*d)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x + A}{\sqrt{c x^{2} + a}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + a)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a}{\left (B x + A\right )} \sqrt{e x + d}}{c e^{2} x^{4} + 2 \, c d e x^{3} + 2 \, a d e x + a d^{2} +{\left (c d^{2} + a e^{2}\right )} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*(B*x + A)*sqrt(e*x + d)/(c*e^2*x^4 + 2*c*d*e*x^3 + 2*a*d*e*x + a*d^2 + (c*d^2 + a*e^2
)*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B x}{\sqrt{a + c x^{2}} \left (d + e x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)**(3/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((A + B*x)/(sqrt(a + c*x**2)*(d + e*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x + A}{\sqrt{c x^{2} + a}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + a)*(e*x + d)^(3/2)), x)